
Supporting parallel tasks
with GRID superscalar

Jorge Ejarque, Enric Tejedor, Daniele Lezzi,
Raül Sirvent, Rosa M. Badia

Barcelona Supercomputing Center (BSC-CNS)
Universitat Politècnica de Catalunya (UPC)

Consejo Superior de Investigaciones Cientificas (CSIC)

IBERGRID Conference 2010

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

2

Outline

  GRID superscalar overview

  Extensions for supporting parallel tasks
  Usage Examples
  Conclusions

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

3

GRID superscalar overview

  Reduce the development complexity of Grid
applications to the minimum
  Writing an application for a computational Grid may be

as easy as writing a sequential application

  Basic idea:

  Target applications: composed of tasks, most of
them repetitive
  Granularity of the tasks of the level of simulations or

programs

Grid
≅	

ns seconds/minutes/hours

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

4

GRID superscalar overview

  GRID superscalar components:

  User interface (programming environment)

  Interface Definition Language (IDL) file

  Main program

  Subroutines/functions

  Constraints file

  Runtime

  Automatic code generator (generate stubs, scripts, …)

  Supported Programming languages:

  C/C++, Perl, Java

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

5

GRID superscalar overview

GS_On();
for (int i = 0; i < MAXITER; i++) {
 newBWd = GenerateRandom();
 subst (referenceCFG, newBWd, newCFG);
 dimemas (newCFG, traceFile, DimemasOUT);
 post (newBWd, DimemasOUT, FinalOUT);
 if(i % 3 == 0) display(FinalOUT);
}
fd = GS_FOpen(FinalOUT, R);
printf("Results file:\n"); present (fd);
GS_FClose(fd);
GS_Off(0);

  Interface Definition Language (IDL) file
  In/Out/InOut files or scalars
  The functions listed will be executed in a remote node in the Grid.

  Master code

interface OPT {
void subst (in File referenceCFG, in double latency, in double bandwidth, \
 out File newCFG);
void dimemas (in File cfgFile, in File traceFile, in double goal, \

 out File DimemasOUT);
void post (in double bw, in File DimemasOUT, inout File resultFile);
void display (in File resultFile);
};

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

6

GRID superscalar overview

void dimemas(char *newCFG, char *traceFile, char *DimemasOUT)
{
 char command[500];
 putenv("DIMEMAS_HOME=/usr/local/cepba-tools");
 sprintf(command, "/usr/local/cepba-tools/bin/Dimemas -o %s %s",

 DimemasOUT, newCFG);
 GS_System(command);
}

  Subroutines/functions

void display(char *toplot)
{
 char command[500];
 sprintf(command, “ ./display.sh %s", toplot);
 GS_System(command);
}

void subst(char *f1, char *f2, char *fout){
FILE *fp;
int i,j,k;
for (i=1; i<1000; i++)
 for (j=0; j<1000; j++)
 k= j%i;
fp = fopen(fout,"w");
fprintf(fp,"Call to concat(%s, %s, %s)\n", f1, f2, fout);
fclose(fp);

}

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

7

Constraints file

  Constraints and cost functions

void dimemas_constraints(char *newCFG, char *traceFile)
{

 return "(member(\"Dimemas23\", other.SoftNameList))“;
}

double dimemas_cost(char *newCFG, char *traceFile) {
 double time;
 time = (GS_Filesize(traceFile)/1000000) * GS_Gflops();
 return(time);

}

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

8

Input/output data

GRID superscalar overview

for (int i = 0; i < MAXITER; i++) {

 newBWd = GenerateRandom();

 subst (referenceCFG, newBWd, newCFG);

 dimemas (newCFG, traceFile, DimemasOUT);

 post (newBWd, DimemasOUT, FinalOUT);

 if(i % 3 == 0) Display(FinalOUT);

}

fd = GS_Open(FinalOUT, R);

printf("Results file:\n"); present (fd);

GS_Close(fd);

  Runtime

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

9

POST
POST

GRID superscalar overview

Subst

DIMEMAS

Subst

DIMEMAS

…

GS_open

Subst

DIMEMAS

POST

Subst

DIMEMAS

POST

Subst

DIMEMAS

POST

Subst

DIMEMAS

POST

Subst

DIMEMAS

POST

Display

Display

CIRI Grid

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

10

Parallel task extensions

  Motivation
  Resources:

  Limited and heterogeneous resources in grid nodes.
  Parallel programming models are optimized for exploiting

parallelism only for type of resource (shared memory,
message passing, grid)

  Application require big amount of heterogeneous resources
are executed in several grid nodes

  We can not use the same programming model for different
resources

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

11

Parallel task extensions

  Motivation

  Applications:
  Scalability constraints
(algorithms do not scale for more than X processes)

  Different levels of parallelism inside the applications (grid,
cluster, nodes)

  Wind power simulation example
  Simulation for different locations (task parallelism -

grid level)
  For each location simulate different wind directions

(“intra-task” parallelism – cluster/node level)

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

12

Parallel task extensions

  Motivation

  Parallel task extensions of GRIDSs goals
  Hides the platform issues to the user
  Allows the combination of the different levels of parallelism

inside a GRIDSs application.

  GRIDSs will execute tasks on a capable resource according
to the type of parallelism of each task.

  Extensions
  User interface

  Runtime

  Automatic code generation

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

13

Parallel task extensions

  User interface
  New function for defining the parallel description

  Type of parallelism:
  Sequential: No parallelism
  Parallel_sh: several processes in a single host (sh)

(openMP, SMPSs, …)
  Parallel_mh: several processes in multiple hosts (mh)

(MPI, UPC,…)
  Num processes executed by each type of task

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

14

Parallel task extensions

  User interface
  Input arguments of the task can be used to calculate the

parallel description parameters.

  Parallel description parameters are collected at runtime
and taken into account for further task management
(scheduling, data transfers,…)

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

15

Parallel task extensions

  Runtime extension
  Scheduling:

  Selection of multiple slots and hosts per task
  GRIDSs selects the group of hosts with the smallest cost for

each task.

  Cost depends:
  Computing cost (provided by the user on the cost function)
  the number of data transferred on the selected hosts (data

locality aware policy)

  GRIDSs will select the group of hosts where the number of
required transfers is the minimum

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

16

Parallel task extensions

  Runtime extension
  Data Management

  Task files transferred to all the assigned hosts.

  Task execution:
  Environment variables required for executing the parallel

task.
  Machine list assigned to a task (GS_MACHINELIST)
  Number of slots assigned to a task (GS_TASK_NCPUS)

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

17

Parallel task extensions

  Automatic code generation
  Generates new description functions

  Generates new execution scripts

  Allows the backward compatibility (generated default
values are the same as sequential)

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

18

Usage example

Single

  Single host

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

19

Usage example

Single

  Multiple host

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

20

Usage example

  Kaleidoscope project

  RTM produces proper sub-salt images,
computational intensive

  1 GRIDSs application per image.
One task per shot (Grid level)
(350,000-500,000 tasks/image)

  Domain decomposition: each task (shot) computed in
different nodes (MPI) (cluster level-parallel_mh)

  Domain executed with different threads. (node level-
parallel-sh)

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

21

Conclusions

  GRIDSs extension for supporting parallel tasks

  Combination of different levels of parallelism

  Extensions:
  User interface : description function.

  Runtime: Scheduling, data management, task execution.
  Automatic Code Generation: new code generation.

  Usage examples:
  Programming complexity is almost the same as programming

with the selected parallel programming model.

4th Iberian Grid Infrastructure Conference
24th-27th May 2010

22

More information

  GRID superscalar home page:
www.bsc.es/grid/grid_superscalar

